Legacy/[Legacy] Project

[토이프로젝트1] 코로나19 데이터 각 컬럼 시각화 및 ARIMA/Prophet 분석

_Aiden 2020. 3. 5. 13:44
728x90

출처 질병관리본부

확진자가 5000명을 넘어선 가운데, 현 시각 기준으로 총 88명의 환자가 완치 판정을 받았다. 정부 당국과 전문가들 사이에선 앞으로 완치 사례가 더 많이 나올 것이란 기대감이 커지고 있다. 대부분의 확진 환자들이 신천지 신도들에게서 발생했다는 점, 그리고 대구와 경북이 아닌 지역에선 그나마 전염 속도가 빠르지 않다는 것이 앞으로를 조금이나마 낙관적으로 바라볼 수 있게 한다.

 

아래의 데이터는 지난 번에 분석한 코로나19 캐글 데이터의 업데이트 버전이다. 3월 4일까지의 데이터가 기록돼있지만 결측치가 없는 확진 날짜(confirmed_date) 피처와는 달리, 회복일(released_date)과 사망일(deceased_date) 피처에는 결측치가 굉장히 많다. 따라서, 컬럼 간의 관계를 살펴보는 건 조금 미루고 이번에는 일단 각 컬럼을 정제하고 시각화를 해봤다. (중간에 확진일과 회복일, 사망일 컬럼 간에 겹치는 날짜를 기준으로 추이(누적 아님)를 시각화했는데 겹치는 날이 너무 적어서 유의미하지는 않은 것 같습니다. 특히 최근 완치 판정을 받는 환자가 늘고 있는데, 그게 반영이 되어있지 않은 데이터임을 감안해주길 바랍니다)

 

중간 중간 iplot으로 그린 그래프가 제대로 보이지 않을 수 있습니다. 아래 파일에는 제대로 반영이 되어있으니 궁금하신 분들은 파일을 클릭해서 봐주세요!

Corona19 - EDA & Prediction(with ARIMA).html
1.26MB

 

 

Corona19 - EDA & Prediction(with ARIMA)
In [186]:
import pandas as pd
import numpy as np
import matplotlib; matplotlib.rc('font', family='Malgun Gothic')
import matplotlib.pyplot as plt
import seaborn as sns
import missingno as msno
import warnings; warnings.filterwarnings('ignore')

plt.style.use('ggplot')
  • id: 확진자의 id (n번째 확진자)
  • sex: 성별
  • birth_year: 출생 연도
  • country: 국적
  • region: 주 활동 지역 (광역시/도 단위)
  • group: 특정 집단 관련
  • infection_reason: 감염 경로
  • infection_order: 감염 차수 (n차 감염)
  • infected_by: 해당 확진자의 감염원 id
  • contact_number: 접촉자 수
  • confirmed_date: 확진 일자
  • released_date: 퇴원 일자 (격리 해제 일자)
  • deceased_date: 사망 일자
  • state: 상태
In [187]:
raw_df = pd.read_csv('/kaggle/input/coronavirusdataset/patient.csv')
print(raw_df.shape)
raw_df.head()
(5766, 14)
Out[187]:
id sex birth_year country region group infection_reason infection_order infected_by contact_number confirmed_date released_date deceased_date state
0 1 female 1984.0 China filtered at airport NaN visit to Wuhan 1.0 NaN 45.0 2020-01-20 2020-02-06 NaN released
1 2 male 1964.0 Korea filtered at airport NaN visit to Wuhan 1.0 NaN 75.0 2020-01-24 2020-02-05 NaN released
2 3 male 1966.0 Korea capital area NaN visit to Wuhan 1.0 NaN 16.0 2020-01-26 2020-02-12 NaN released
3 4 male 1964.0 Korea capital area NaN visit to Wuhan 1.0 NaN 95.0 2020-01-27 2020-02-09 NaN released
4 5 male 1987.0 Korea capital area NaN visit to Wuhan 1.0 NaN 31.0 2020-01-30 2020-03-02 NaN released
In [188]:
raw_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5766 entries, 0 to 5765
Data columns (total 14 columns):
id                  5766 non-null int64
sex                 417 non-null object
birth_year          404 non-null float64
country             5765 non-null object
region              406 non-null object
group               83 non-null object
infection_reason    146 non-null object
infection_order     35 non-null float64
infected_by         70 non-null float64
contact_number      50 non-null float64
confirmed_date      5765 non-null object
released_date       32 non-null object
deceased_date       20 non-null object
state               5765 non-null object
dtypes: float64(4), int64(1), object(9)
memory usage: 630.8+ KB
In [189]:
msno.bar(raw_df)
Out[189]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f070788f128>
  • 결측치가 매우 많음
In [190]:
raw_df.describe(include='all')
Out[190]:
id sex birth_year country region group infection_reason infection_order infected_by contact_number confirmed_date released_date deceased_date state
count 5766.000000 417 404.000000 5765 406 83 146 35.000000 70.000000 50.000000 5765 32 20 5765
unique NaN 2 NaN 3 14 6 15 NaN NaN NaN 30 17 11 3
top NaN female NaN Korea capital area Shincheonji Church contact with patient NaN NaN NaN 2020-03-01 2020-02-19 2020-02-23 isolated
freq NaN 212 NaN 5756 191 53 75 NaN NaN NaN 1062 4 4 5710
mean 2883.500000 NaN 1974.386139 NaN NaN NaN NaN 2.285714 379.000000 69.400000 NaN NaN NaN NaN
std 1664.645157 NaN 17.510278 NaN NaN NaN NaN 1.405272 540.247528 182.876338 NaN NaN NaN NaN
min 1.000000 NaN 1932.000000 NaN NaN NaN NaN 1.000000 3.000000 0.000000 NaN NaN NaN NaN
25% 1442.250000 NaN 1961.000000 NaN NaN NaN NaN 1.000000 29.250000 3.000000 NaN NaN NaN NaN
50% 2883.500000 NaN 1974.500000 NaN NaN NaN NaN 2.000000 126.000000 15.500000 NaN NaN NaN NaN
75% 4324.750000 NaN 1989.000000 NaN NaN NaN NaN 3.000000 563.250000 44.500000 NaN NaN NaN NaN
max 5766.000000 NaN 2018.000000 NaN NaN NaN NaN 6.000000 2621.000000 1160.000000 NaN NaN NaN NaN
In [191]:
# 각 컬럼의 결측치 개수
raw_df.isnull().sum().to_frame().T
Out[191]:
id sex birth_year country region group infection_reason infection_order infected_by contact_number confirmed_date released_date deceased_date state
0 0 5349 5362 1 5360 5683 5620 5731 5696 5716 1 5734 5746 1

각 컬럼 살펴보기(cleaning)

sex

In [192]:
print(raw_df['sex'].unique())
plt.style.use('ggplot')
raw_df['sex'].value_counts().plot.bar()
['female' 'male' nan]
Out[192]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f07046a1048>
In [193]:
raw_df.head()
Out[193]:
id sex birth_year country region group infection_reason infection_order infected_by contact_number confirmed_date released_date deceased_date state
0 1 female 1984.0 China filtered at airport NaN visit to Wuhan 1.0 NaN 45.0 2020-01-20 2020-02-06 NaN released
1 2 male 1964.0 Korea filtered at airport NaN visit to Wuhan 1.0 NaN 75.0 2020-01-24 2020-02-05 NaN released
2 3 male 1966.0 Korea capital area NaN visit to Wuhan 1.0 NaN 16.0 2020-01-26 2020-02-12 NaN released
3 4 male 1964.0 Korea capital area NaN visit to Wuhan 1.0 NaN 95.0 2020-01-27 2020-02-09 NaN released
4 5 male 1987.0 Korea capital area NaN visit to Wuhan 1.0 NaN 31.0 2020-01-30 2020-03-02 NaN released

bitrh_year

In [194]:
raw_df['birth_year'].value_counts()
Out[194]:
1985.0    23
1956.0    12
1997.0    12
1996.0    11
1995.0    10
          ..
2007.0     1
1935.0     1
1952.0     1
1940.0     1
1934.0     1
Name: birth_year, Length: 76, dtype: int64
In [195]:
sns.distplot(raw_df['birth_year'], hist=False, color='red')
Out[195]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f0704698208>
In [196]:
# birth_year 대신 age 컬럼을 새로 만들겠다
# raw_df['birth_year'] = raw_df['birth_year'].astype(float).map(lambda x: x if x>0 else np.nan)
raw_df['age'] = pd.datetime.now().year - raw_df['birth_year']
sns.distplot(raw_df['age'], hist=False)
Out[196]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f070446af60>
In [197]:
raw_df.drop(['birth_year'], axis=1, inplace=True)
raw_df.head(3)
Out[197]:
id sex country region group infection_reason infection_order infected_by contact_number confirmed_date released_date deceased_date state age
0 1 female China filtered at airport NaN visit to Wuhan 1.0 NaN 45.0 2020-01-20 2020-02-06 NaN released 36.0
1 2 male Korea filtered at airport NaN visit to Wuhan 1.0 NaN 75.0 2020-01-24 2020-02-05 NaN released 56.0
2 3 male Korea capital area NaN visit to Wuhan 1.0 NaN 16.0 2020-01-26 2020-02-12 NaN released 54.0

country & region

In [198]:
raw_df.isnull().sum().to_frame().T
Out[198]:
id sex country region group infection_reason infection_order infected_by contact_number confirmed_date released_date deceased_date state age
0 0 5349 1 5360 5683 5620 5731 5696 5716 1 5734 5746 1 5362
In [199]:
print(raw_df['country'].value_counts()); print('------------------------')
print(raw_df['region'].value_counts())
raw_df[['country', 'region']].head()
Korea       5756
China          8
Mongolia       1
Name: country, dtype: int64
------------------------
capital area           191
Gyeongsangbuk-do       121
Daegu                   46
Daejeon                 13
Gwangju                 11
Gangwon-do               5
filtered at airport      4
Jeollabuk-do             3
Jeollanam-do             3
Busan                    2
Ulsan                    2
Chungcheongbuk-do        2
Jeju-do                  2
Chungcheongnam-do        1
Name: region, dtype: int64
Out[199]:
country region
0 China filtered at airport
1 Korea filtered at airport
2 Korea capital area
3 Korea capital area
4 Korea capital area
  • region 컬럼의 데이터 정제
In [200]:
def region_clean(df):
    if pd.isnull(df):
        return np.nan
    else:
        return df.replace('Gyeongsangbuk-do', 'Gyeongbuk').\
    replace('capital area', 'Capital').replace('Dague', 'Daegu').\
    replace('Gangwon-do', 'Gangwon').replace('Jeollabuk-do', 'Jeonbuk').replace('Jeollanam-do', 'Jeonnam').\
    replace('Jeju-do', 'Jeju').replace('Chungcheongbuk-do', 'Chungcheong').\
    replace('Chungcheongnam-do', 'Chungcheong')
    
raw_df['region'] = raw_df['region'].apply(region_clean)
raw_df['region'].value_counts()
Out[200]:
Capital                191
Gyeongbuk              121
Daegu                   46
Daejeon                 13
Gwangju                 11
Gangwon                  5
filtered at airport      4
Jeonnam                  3
Jeonbuk                  3
Chungcheong              3
Busan                    2
Ulsan                    2
Jeju                     2
Name: region, dtype: int64
In [201]:
import chart_studio.plotly as py
import plotly.graph_objs as go
import cufflinks as cf 
cf.go_offline(connected=True)

raw_df['region'].iplot(kind='hist', linecolor='blue')

group, infection_reason, infection_order, infected_by

In [202]:
raw_df.head()
Out[202]:
id sex country region group infection_reason infection_order infected_by contact_number confirmed_date released_date deceased_date state age
0 1 female China filtered at airport NaN visit to Wuhan 1.0 NaN 45.0 2020-01-20 2020-02-06 NaN released 36.0
1 2 male Korea filtered at airport NaN visit to Wuhan 1.0 NaN 75.0 2020-01-24 2020-02-05 NaN released 56.0
2 3 male Korea Capital NaN visit to Wuhan 1.0 NaN 16.0 2020-01-26 2020-02-12 NaN released 54.0
3 4 male Korea Capital NaN visit to Wuhan 1.0 NaN 95.0 2020-01-27 2020-02-09 NaN released 56.0
4 5 male Korea Capital NaN visit to Wuhan 1.0 NaN 31.0 2020-01-30 2020-03-02 NaN released 33.0
In [203]:
print(raw_df['group'].value_counts()); print('--------------------')
print(raw_df['infection_reason'].value_counts()); print('------------------')
print(raw_df['infection_order'].value_counts()); print('---------------------')
print(raw_df['infected_by'].value_counts())
Shincheonji Church               53
Eunpyeong St. Mary's Hospital    13
Cheongdo Daenam Hospital          9
Pilgrimage                        6
Onchun Church                     1
Myungsung church                  1
Name: group, dtype: int64
--------------------
contact with patient                 75
visit to Daegu                       43
visit to Wuhan                        8
pilgrimage to Israel                  6
residence in Wuhan                    2
contact with patient in Singapore     2
visit to Thailand                     2
visit to Italy                        1
contact with patient in Japan         1
visit to Cheongdo Daenam Hospital     1
visit to Vietnam                      1
visit to China                        1
visit to Shincheonji Church           1
 visit to China                       1
visit to Japan                        1
Name: infection_reason, dtype: int64
------------------
1.0    13
2.0    10
3.0     6
5.0     3
4.0     2
6.0     1
Name: infection_order, dtype: int64
---------------------
31.0      8
6.0       5
126.0     3
780.0     3
372.0     3
3.0       2
246.0     2
335.0     2
794.0     2
1252.0    2
83.0      2
161.0     2
27.0      2
15.0      2
16.0      2
1532.0    2
230.0     2
20.0      1
4.0       1
40.0      1
56.0      1
30.0      1
44.0      1
12.0      1
5.0       1
113.0     1
1247.0    1
1251.0    1
164.0     1
121.0     1
938.0     1
627.0     1
835.0     1
188.0     1
29.0      1
136.0     1
1177.0    1
347.0     1
1257.0    1
2621.0    1
1768.0    1
Name: infected_by, dtype: int64
In [204]:
def infection_reason_clean(df):
    if pd.isnull(df):
        return np.nan
    if 'Wuhan' in df:
        return 'Wuhan'
    if 'Daegu' in df:
        return 'Daegu'
    if 'Israel' in df: 
        return 'Abroad'
    if 'Thailand' in df:
        return 'Abroad'
    if 'Singapore' in df:
        return 'Abroad'
    if 'Vietnam' in df:
        return 'Abroad'
    if 'Japan' in df:
        return 'Abroad'
    if 'China' in df:
        return 'Abroad'
    if 'Italy' in df:
        return 'Italy'
    if 'Cheongdo' in df:
        return 'Cheongo Daenam hospital'
    else:
        return df
        
raw_df['infection_reason'] = raw_df['infection_reason'].apply(infection_reason_clean)
raw_df['infection_reason'].value_counts()
Out[204]:
contact with patient           75
Daegu                          43
Abroad                         15
Wuhan                          10
visit to Shincheonji Church     1
Italy                           1
Cheongo Daenam hospital         1
Name: infection_reason, dtype: int64
In [205]:
fig = plt.figure(figsize=(10, 4))

fig.add_subplot(1, 2, 1)
raw_df['infection_reason'].value_counts().plot.barh(color='green')
plt.title('infection reason')
fig.add_subplot(1, 2, 2)
raw_df['infection_order'].value_counts().plot.bar()
plt.title('infection order')
Out[205]:
Text(0.5, 1.0, 'infection order')
In [206]:
raw_df['infected_by'].value_counts().plot(kind='barh', figsize=(20,10))
Out[206]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f07023cdf60>

contact_number, state

In [207]:
print(raw_df['contact_number'].value_counts())
raw_df['contact_number'].value_counts().iplot(kind='bar')
2.0       5
0.0       4
1.0       3
23.0      3
14.0      2
9.0       2
3.0       2
8.0       2
95.0      1
30.0      1
40.0      1
12.0      1
15.0      1
6.0       1
11.0      1
17.0      1
16.0      1
5.0       1
20.0      1
43.0      1
113.0     1
61.0      1
65.0      1
47.0      1
75.0      1
422.0     1
31.0      1
39.0      1
68.0      1
27.0      1
450.0     1
117.0     1
290.0     1
1160.0    1
45.0      1
Name: contact_number, dtype: int64
In [208]:
plt.figure(figsize=(10,8))
raw_df['contact_number'].value_counts().plot.kde()
Out[208]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f0701ca84a8>
In [209]:
sns.set(font_scale=1.2)
raw_df['state'].value_counts().plot.bar(figsize=(8,6))
plt.title('state')
Out[209]:
Text(0.5, 1.0, 'state')
In [210]:
table = pd.pivot_table(data=raw_df,
               index='id',
              values='contact_number',
              aggfunc='sum')
table = table[table['contact_number'] > 0]
table
Out[210]:
contact_number
id
1 45.0
2 75.0
3 16.0
4 95.0
5 31.0
6 17.0
7 9.0
8 113.0
9 2.0
10 43.0
12 422.0
14 3.0
15 15.0
16 450.0
17 290.0
18 8.0
19 68.0
20 2.0
21 6.0
22 1.0
23 23.0
25 12.0
27 40.0
28 1.0
29 117.0
30 27.0
31 1160.0
40 8.0
126 65.0
210 30.0
239 14.0
241 23.0
372 9.0
489 39.0
573 1.0
589 47.0
1568 2.0
1569 5.0
1856 2.0
1913 61.0
2020 11.0
2025 2.0
2477 14.0
3047 23.0
3797 20.0
3886 3.0
In [211]:
sns.relplot(y='contact_number', x='id', data=table.reset_index())
Out[211]:
<seaborn.axisgrid.FacetGrid at 0x7f07046bdc50>

confirmed_date, released_date, deceased_date

In [212]:
msno.bar(raw_df[['confirmed_date', 'released_date', 'deceased_date']],
        fontsize=30)
Out[212]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f070227dc18>
In [213]:
raw_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5766 entries, 0 to 5765
Data columns (total 14 columns):
id                  5766 non-null int64
sex                 417 non-null object
country             5765 non-null object
region              406 non-null object
group               83 non-null object
infection_reason    146 non-null object
infection_order     35 non-null float64
infected_by         70 non-null float64
contact_number      50 non-null float64
confirmed_date      5765 non-null object
released_date       32 non-null object
deceased_date       20 non-null object
state               5765 non-null object
age                 404 non-null float64
dtypes: float64(4), int64(1), object(9)
memory usage: 630.8+ KB
In [214]:
raw_df['confirmed_date'] = pd.to_datetime(raw_df['confirmed_date'])
raw_df['released_date'] = pd.to_datetime(raw_df['released_date'])
raw_df['deceased_date'] = pd.to_datetime(raw_df['deceased_date'])
raw_df.dtypes
Out[214]:
id                           int64
sex                         object
country                     object
region                      object
group                       object
infection_reason            object
infection_order            float64
infected_by                float64
contact_number             float64
confirmed_date      datetime64[ns]
released_date       datetime64[ns]
deceased_date       datetime64[ns]
state                       object
age                        float64
dtype: object
In [215]:
sns.set(font_scale=1.4)
# plt.rc('font', family='Malgun Gothic')

fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(18,10))
sns.distplot(raw_df['confirmed_date'].value_counts(), kde=False, ax=ax1)
sns.distplot(raw_df['confirmed_date'].value_counts(), bins=3, hist=False, ax=ax2)
ax1.set_title('confirmed histogram')
ax2.set_title('confirmed kde plot')
plt.tight_layout()

컬럼 순서 변경

In [216]:
# 편의상 컬럼 순서 변경!
raw_df.head()
Out[216]:
id sex country region group infection_reason infection_order infected_by contact_number confirmed_date released_date deceased_date state age
0 1 female China filtered at airport NaN Wuhan 1.0 NaN 45.0 2020-01-20 2020-02-06 NaT released 36.0
1 2 male Korea filtered at airport NaN Wuhan 1.0 NaN 75.0 2020-01-24 2020-02-05 NaT released 56.0
2 3 male Korea Capital NaN Wuhan 1.0 NaN 16.0 2020-01-26 2020-02-12 NaT released 54.0
3 4 male Korea Capital NaN Wuhan 1.0 NaN 95.0 2020-01-27 2020-02-09 NaT released 56.0
4 5 male Korea Capital NaN Wuhan 1.0 NaN 31.0 2020-01-30 2020-03-02 NaT released 33.0
In [217]:
raw_df.columns.tolist()
Out[217]:
['id',
 'sex',
 'country',
 'region',
 'group',
 'infection_reason',
 'infection_order',
 'infected_by',
 'contact_number',
 'confirmed_date',
 'released_date',
 'deceased_date',
 'state',
 'age']
In [218]:
col = raw_df.columns[[0, 12, 13, 1, 2, 3, 9, 10, 11, 4, 5, 7, 8, 6]]
df = raw_df[col].copy()
print(df.shape)
df.head()
(5766, 14)
Out[218]:
id state age sex country region confirmed_date released_date deceased_date group infection_reason infected_by contact_number infection_order
0 1 released 36.0 female China filtered at airport 2020-01-20 2020-02-06 NaT NaN Wuhan NaN 45.0 1.0
1 2 released 56.0 male Korea filtered at airport 2020-01-24 2020-02-05 NaT NaN Wuhan NaN 75.0 1.0
2 3 released 54.0 male Korea Capital 2020-01-26 2020-02-12 NaT NaN Wuhan NaN 16.0 1.0
3 4 released 56.0 male Korea Capital 2020-01-27 2020-02-09 NaT NaN Wuhan NaN 95.0 1.0
4 5 released 33.0 male Korea Capital 2020-01-30 2020-03-02 NaT NaN Wuhan NaN 31.0 1.0
In [219]:
# df.to_csv('../corona/corona(kaggle)_update_data.csv')

추이

In [220]:
len(df.id.unique())
Out[220]:
5766
In [221]:
confirm = pd.pivot_table(data=df,
                        index='confirmed_date',
                        values='id',
                        aggfunc=len)
confirm.rename(columns={'id':'count'}, inplace=True)
confirm
Out[221]:
count
confirmed_date
2020-01-20 1
2020-01-24 1
2020-01-26 1
2020-01-27 1
2020-01-30 3
2020-01-31 4
2020-02-01 1
2020-02-02 3
2020-02-04 1
2020-02-05 5
2020-02-06 3
2020-02-09 3
2020-02-10 1
2020-02-16 2
2020-02-18 9
2020-02-19 26
2020-02-20 38
2020-02-21 100
2020-02-22 229
2020-02-23 169
2020-02-24 231
2020-02-25 143
2020-02-26 285
2020-02-27 505
2020-02-28 571
2020-02-29 813
2020-03-01 1062
2020-03-02 600
2020-03-03 516
2020-03-04 438
In [222]:
confirm.iplot(kind='line',
             xTitle='날짜',
             yTitle='확진자수',
             title='확진자 추이',
             theme=cf.set_config_file(theme='solar'))
In [223]:
plt.figure(figsize=(10,8))
sns.pointplot(data=confirm.reset_index(), x=np.arange(len(confirm.reset_index()['confirmed_date'])), y='count')
plt.xlabel('2020.01.26~2020.03.04',
          fontdict={'size':16})
Out[223]:
Text(0.5, 0, '2020.01.26~2020.03.04')
In [224]:
release = df.groupby('released_date')['id'].count().to_frame()
decease = df.groupby('deceased_date')['id'].count().to_frame()
In [225]:
confirm_reset = confirm.reset_index()
release_reset = release.reset_index()
decease_reset = decease.reset_index()
data_merged = confirm_reset.merge(release_reset,
                    how='inner',
                    left_on='confirmed_date',
                    right_on='released_date', ).\
merge(decease_reset,
     how='inner', left_on='released_date', right_on='deceased_date')

data_merged.drop(columns=['released_date', 'deceased_date'], axis=1, inplace=True)
data_merged.columns = ['date', 'confirmed', 'released', 'deceased']
data_merged
Out[225]:
date confirmed released deceased
0 2020-02-19 26 4 1
1 2020-02-21 100 1 1
2 2020-02-24 231 4 2
3 2020-02-26 285 2 1
4 2020-02-27 505 4 1
5 2020-03-01 1062 1 3
6 2020-03-02 600 1 3
In [226]:
data_merged.set_index('date').iplot(kind='box')
In [227]:
data_merged.set_index('date').iplot(kind='barh')
In [228]:
cf.set_config_file(theme='ggplot')
data_merged.set_index('date').iplot(kind='surface')
In [229]:
data_merged.set_index('date').iplot(kind='spread')

확진자 예측

In [230]:
plt.rc('font', family='Malgun Gothic')
confirm.cumsum().plot(figsize=(9,6))
plt.title('confirmed Cumulative trend')
Out[230]:
Text(0.5, 1.0, 'confirmed Cumulative trend')

- ARIMA로 예측해보기

In [231]:
from statsmodels.tsa.arima_model import ARIMA
import statsmodels.api as sm

confirm_cumsum = confirm.cumsum()
# confirm_cumsum = confirm_cumsum['count'].astype(float).to_frame()
confirm_cumsum.tail()
Out[231]:
count
confirmed_date
2020-02-29 3149
2020-03-01 4211
2020-03-02 4811
2020-03-03 5327
2020-03-04 5765
In [232]:
model = ARIMA(confirm_cumsum['count'].values, order=(1, 2, 1))
fit_model = model.fit(trend='c', full_output=True, disp=True)
fit_model.summary()
# 계수들의 p-value 값이 유의수준 0.05보다 작음. AR=1, MA=1, 차분=2로 설정하는 것 유의미하다고 보여짐.
Out[232]:
ARIMA Model Results
Dep. Variable: D2.y No. Observations: 28
Model: ARIMA(1, 2, 1) Log Likelihood -174.304
Method: css-mle S.D. of innovations 119.076
Date: Thu, 05 Mar 2020 AIC 356.608
Time: 10:36:34 BIC 361.937
Sample: 2 HQIC 358.237
coef std err z P>|z| [0.025 0.975]
const 21.4082 9.217 2.323 0.020 3.344 39.472
ar.L1.D2.y 0.7837 0.140 5.585 0.000 0.509 1.059
ma.L1.D2.y -1.0000 0.094 -10.656 0.000 -1.184 -0.816
Roots
Real Imaginary Modulus Frequency
AR.1 1.2761 +0.0000j 1.2761 0.0000
MA.1 1.0000 +0.0000j 1.0000 0.0000

계수들의 p-value값이 0.05보다 작으므로 AR, MA, 차분값 유의미하다고 보여짐

In [233]:
plt.rc('font', family='Malgun Gothic')
fit_model.plot_predict()
plt.title('Forecast Result')
pd.DataFrame(fit_model.resid).plot()
plt.title('Error Variation of Actual and Predicted Values')
Out[233]:
Text(0.5, 1.0, 'Error Variation of Actual and Predicted Values')

- 이 ARIMA 모델로 3월 5일부터 10일까지 누적 확진자 수 예측

In [234]:
forcast = fit_model.forecast(steps=6)
pred_y = forcast[0].tolist()
pred_y
Out[234]:
[6240.9954434251495,
 6751.397713386783,
 7293.394583498821,
 7864.782247255323,
 8463.833687535742,
 9089.195524119703]
In [235]:
pd.DataFrame(data=pred_y,
             index=['3/5', '3/6', '3/7', '3/8', '3/9', '3/10'],
            columns=['confirmed_count(cumsum)'])
Out[235]:
confirmed_count(cumsum)
3/5 6240.995443
3/6 6751.397713
3/7 7293.394583
3/8 7864.782247
3/9 8463.833688
3/10 9089.195524

3월 5일 오후 19시 31분 기준으로 실제 누적 확진자 수는 6088명
ARIMA 모델로 예측한 값(6240명)과 실제 값 사이에 오차가 조금은 있지만 유사함

fbprophet으로 예측

In [236]:
from fbprophet import Prophet
In [261]:
fb_data = confirm_cumsum.reset_index()
fb_data.columns = ['ds','y']
fb_data
Out[261]:
ds y
0 2020-01-20 1
1 2020-01-24 2
2 2020-01-26 3
3 2020-01-27 4
4 2020-01-30 7
5 2020-01-31 11
6 2020-02-01 12
7 2020-02-02 15
8 2020-02-04 16
9 2020-02-05 21
10 2020-02-06 24
11 2020-02-09 27
12 2020-02-10 28
13 2020-02-16 30
14 2020-02-18 39
15 2020-02-19 65
16 2020-02-20 103
17 2020-02-21 203
18 2020-02-22 432
19 2020-02-23 601
20 2020-02-24 832
21 2020-02-25 975
22 2020-02-26 1260
23 2020-02-27 1765
24 2020-02-28 2336
25 2020-02-29 3149
26 2020-03-01 4211
27 2020-03-02 4811
28 2020-03-03 5327
29 2020-03-04 5765
In [313]:
prophet = Prophet(growth='linear',
                  seasonality_mode='multiplicative',
                  yearly_seasonality=True,
                  weekly_seasonality=True,
                  daily_seasonality=True,
                  changepoint_range=0.6, # 데이터의 60% 정도에서 changepoint
                  changepoint_prior_scale=0.1) 
prophet.fit(fb_data)
Out[313]:
<fbprophet.forecaster.Prophet at 0x7f07017a4cf8>
In [314]:
# 4일 동안의 확진자 수(누적) 예측
future_data = prophet.make_future_dataframe(periods=4)
forecast_data = prophet.predict(future_data)
forecast_data[['ds', 'yhat', 'yhat_lower', 'yhat_upper']].tail(10)
Out[314]:
ds yhat yhat_lower yhat_upper
24 2020-02-28 2335.377682 2319.881367 2350.008420
25 2020-02-29 3155.718517 3140.490118 3170.073864
26 2020-03-01 4197.917153 4183.645985 4213.545208
27 2020-03-02 4820.853876 4804.970946 4836.395622
28 2020-03-03 5323.644768 5308.341056 5337.993690
29 2020-03-04 5765.541965 5751.544164 5781.072334
30 2020-03-05 6298.799025 6278.278276 6316.998591
31 2020-03-06 6484.177898 6450.120650 6511.420576
32 2020-03-07 6630.252442 6571.171449 6681.754890
33 2020-03-08 6638.664999 6546.941372 6726.384686
In [315]:
from fbprophet.plot import add_changepoints_to_plot

fig = prophet.plot(forecast_data)
a = add_changepoints_to_plot(fig.gca(), prophet, forecast_data)
In [316]:
sns.set(font_scale=1.1)
fig1 = prophet.plot_components(forecast_data)
plt.tight_layout()
  • 1번 그래프는 시계열 데이터의 전체적인 트렌드를 보여주고
  • 2번 그래프는 weekly 트렌드를
  • 3번 그래프는 yearly 트렌드를
  • 마지막 4번 그래프는 daily 트렌드를 보여준다
반응형
LIST